Drogas de abuso y epigenética: Pasado, presente y futuro
DOI:
https://doi.org/10.20882/adicciones.2006Palabras clave:
drogas, epigenética.Resumen
Las modificaciones epigenéticas se definen como cambios en la expresión génica, potencialmente heredables y posiblemente reversibles, que no implican una alteración directa en la secuencia de ADN (Dupont et al., 2009). Numerosas evidencias sugieren que los factores ambientales (p. ej., toma de drogas) y sociales (p. ej., el estrés) relacionados con el consumo de drogas pueden alterar la expresión génica en el cerebro (y de otros órganos) en las personas consumidoras, provocando cambios en el desarrollo y el comportamiento en estos individuos, y probablemente facilitando la aparición de trastornos por uso de sustancias (TUS). Por tanto, comprender los mecanismos subyacentes a la interacción entre estos factores ambientales y genéticos es de importancia fundamental para determinar el desarrollo, la herencia y la posible mejora del tratamiento de los TUS.Citas
Aguado, T., Carracedo, A., Julien, B., Velasco, G., Milman, G., Mechoulam, R., Alvarez, L., Guzmán, M. y Galve-Roperh, I. (2007). Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. Journal of Biological Chemistry, 282, 6854-6862. doi:10.1074/jbc.M608900200.
Ausió, J. (2016). MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clinical Epigenetics, 8, 58. doi:10.1186/s13148-016-0214-5.
Bala, S., Csak, T., Kodys, K., Catalano, D., Ambade, A., Furi, I., Lowe, P., Cho, Y., Iracheta-Vellve, A. y Szabo, G. (2017). Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. Journal of Leukocyte Biology, 102, 487-498. doi:10.1189/jlb.3A0716-310R.
Bastle, R. M. y Neisewander, J. L. (2016). Epigenetics and drug abuse. En W. M. Meil y C. L. Ruby (Eds.), Recent advances in drug addiction research and clinical applications. IntechOpen. doi:10.5772/63952.
Bastle, R. M., Oliver, R. J., Gardiner, A. S., Pentkowski, N. S., Bolognani, Allan, A. M., Chaudhury, T., St Peter, M., Galles, N., Smith, C., Neisewander, J. L. y Perrone-Bizzozero, N. I. (2018). In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Molecular Psychiatry, 23, 434-443. doi:10.1038/mp.2016.238.
Berdasco, M., Ropero, S., Setien, F., Fraga, M. F., Lapunzina, P., Losson, R., Alaminos, M., Cheung, N. K., Rahman, N. y Esteller, M. (2009). Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proceedings of the National Academy of Sciences, 106, 21830-21835. doi:10.1073/pnas.0906831106.
Brooks, A. C. y Henderson, B. J. (2021). Systematic review of nicotine exposure’s effects on neural stem and progenitor cells. Brain Sciences, 11. doi:10.3390/brainsci11020172.
Byrnes, J. J., Babb, J. A., Scanlan, V. F. y Byrnes, E. M. (2011). Adolescent opioid exposure in female rats: Transgenerational effects on morphine analgesia and anxiety-like behavior in adult offspring. Behavioural Brain Research, 218, 200-205. doi:10.1016/j.bbr.2010.11.059.
Caccamo, A., Maldonado, M. A., Bokov, A. F., Majumder, S. y Oddo, S. (2010). CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences, 107, 22687-22692. doi:10.1073/pnas.1012851108.
Campbell, R. R., Kramár, E. A., Pham, L., Beardwood, J. H., Augustynski, A. S., López, A. J., Chitnis, O. S., Delima, G., Banihani, J., Matheos, D. P. y Wood, M. A. (2021). HDAC3 activity within the nucleus accumbens regulates cocaine-induced plasticity and behavior in a cell-type-specific manner. The Journal of Neuroscience, 41, 2814-2827. doi:10.1523/jneurosci.2829-20.2021.
Covington, H. E., Maze, I., Sun, H., Bomze, H. M., DeMaio, K. D., Wu, E. Y., Dietz, D. M., Lobo, M. K., Ghose, S., Mouzon, E., Neve, R. L., Tamminga, C. A. y Nestler, E. J (2011). A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 71, 656-670. doi:10.1016/j.neuron.2011.06.007.
D’Addario, C., Di Francesco, A., Pucci, M., Finazzi Agrò, A. y Maccarrone, M. (2013). Epigenetic mechanisms and endocannabinoid signalling. The FEBS Journal, 280, 1905-1917. doi:10.1111/febs.12125.
Dall’Aglio, L., Muka, T., Cecil, C. A. M., Bramer, W. M., Verbiest, M. M. P. J., Nano, J., Hidalgo, A. C., Franco, O. H. y Tiemeier, H. (2018). The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 94, 17-30. doi:10.1016/j.neubiorev.2018.07.011.
Dupont, C., Armant, D. R. y Brenner, C. A. (2009). Epigenetics: Definition, mechanisms and clinical perspective. Seminars in Reproductive Medicine, 27, 351-357. doi:10.1055/s-0029-1237423.
Flagel, S. B., Chaudhury, S., Waselus, M., Kelly, R., Sewani, S., Clinton, S. M., Thompson, R. C., Watson, S. J. y Akil, H. (2016). Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model. Proceedings of the National Academy of Sciences, 113, E2861-E2870. doi:10.1073/pnas.1520491113.
Gapp, K., von Ziegler, L., Tweedie-Cullen, R. Y. y Mansuy, I. M. (2014). Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays, 36, 491-502. doi:10.1002/bies.201300116.
Gomes, T. M., Dias da Silva, D., Carmo, H., Carvalho, F. y Silva, J. P. (2020). Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacological Research, 105237. doi:10.1016/j.phrs.2020.105237.
González, B., Gancedo, S. N., Garazatua, S. A. J., Roldán, E., Vitullo, A. D. y González, C. R. (2020). Dopamine receptor D1 contributes to cocaine epigenetic reprogramming of histone modifications in male germ cells. Frontiers in Cell and Developmental Biology, 8. doi:10.3389/fcell.2020.00216.
Good, K. V., Vincent, J. B. y Ausió, J. (2021). MeCP2: The genetic driver of Rett Syndrome eEpigenetics. Frontiers in Genetics, 12. doi:10.3389/fgene.2021.620859.
Innocenzi, E., De Domenico, E., Ciccarone, F., Zampieri, M., Rossi, G., Cicconi, R., Bernardini, R., Mattei, M. y Grimaldi, P. (2019). Paternal activation of CB(2) cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Scientific Reports, 9, 17034-17034. doi:10.1038/s41598-019-53579-3.
Jeanblanc, J., Lemoine, S., Jeanblanc, V., Alaux-Cantin, S. y Naassila, M. (2015). The class I-specific HDAC inhibitor MS-275 decreases motivation to consume alcohol and relapse in heavy drinking rats. International Journal of Neuropsychopharmacology, 18. doi:10.1093/ijnp/pyv029.
Jin, B., Tao, Q., Peng, J., Soo, H. M., Wu, W., Ying, J., Fields, C. R., Delmas, A. L., Liu, X., Qiu, J. y Robertson, K. D. (2008). DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Human Molecular Genetics, 17, 690-709. doi:10.1093/hmg/ddm341.
Jindal, S., Kumar, N., Shah, A. A., Shah, A., Gourishetti, K. y Chamallamudi, M. R. (2021). Histone deacetylase inhibitors prevented the development of morphine tolerance by decreasing IL6 production and upregulating mu-opioid receptors. CNS Neurological Disorders and Drug Targets, 20, 190-198. doi:10.2174/1871527319999201113102852.
Koo, J. W., Mazei-Robison, M. S., LaPlant, Q., Egervari, G., Braunscheidel, K. M., Adank, D. N., Ferguson, D., Feng, J., Sun, H., Scobie, K. N., Damez-Werno, D. M., Ribeiro, E., Peña, C. J., Walker, D., Bagot, R. C., Cahill, M. E., Anderson, S. A. R., Labonté, B., Hodes, G. E. y Nestler, E. J. (2015). Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nature Neuroscience, 18, 415-422. doi:10.1038/nn.3932.
Korolev, N., Lyubartsev, A. P. y Nordenskiöld, L. (2018). A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Scientific Reports, 8, 1543. doi:10.1038/s41598-018-19875-0.
Kouzarides, T. (2007). Chromatin nodifications and their function. Cell, 128, 693-705. doi:10.1016/j.cell.2007.02.005.
Liu, G., Xing, Y., Zhao, H., Cai, L. y Wang, J. (2018). The implication of DNA bending energy for nucleosome positioning and sliding. Scientific Reports, 8, 8853. doi:10.1038/s41598-018-27247-x.
Liu, J., Chen, J., Ehrlich, S., Walton, E., White, T., Perrone-Bizzozero, N., Bustillo, J., Turner, J. A. y Calhoun, V. D. (2013). Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophrenia Bulletin, 40, 769-776. doi:10.1093/schbul/sbt080.
Marutha Ravindran, C. R. y Ticku, M. K. (2005). Role of CpG islands in the up-regulation of NMDA receptor NR2B gene expression following chronic ethanol treatment of cultured cortical neurons of mice. Neurochemistry international, 46, 313–327. doi: 10.1016/j.neuint.2004.10.004.
Maze, I., Chaudhury, D., Dietz, D. M., Von Schimmelmann, M., Kennedy, P. J., Lobo, M. K., Sillivan, S. E., Miller, M. L., Bagot, R. C., Sun, H., Turecki, G., Neve, R. L., Hurd, Y. L., Shen, L., Han, M.-H., Schaefer, A. y Nestler, E. J. (2014). G9a influences neuronal subtype specification in striatum. Nature Neuroscience, 17, 533-539. doi:10.1038/nn.3670.
Merid, S. K., Novoloaca, A., Sharp, G. C., Küpers, L. K., Kho, A. T., Roy, R., Gao, L., Annesi-Maesano, I., Jain, P., Plusquin, M., Kogevinas, M., Allard, C., Vehmeijer, F. O., Kazmi, N., Salas, L. A., Rezwan, F. I., Zhang, H., Sebert, S., Czamara, D., Rifas-Shiman, S. L. y Melén, E. (2020). Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Medicine, 12, 25-25. doi:10.1186/s13073-020-0716-9.
Mews, P., Egervari, G., Nativio, R., Sidoli, S., Donahue, G., Lombroso, S. I., Alexander, D. C., Riesche, S. L., Heller, E. A., Nestler, E. J., Garcia, B. A. y Berger, S. L. (2019). Alcohol metabolism contributes to brain histone acetylation. Nature, 574, 717-721. doi:10.1038/s41586-019-1700-7.
Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., Shcherbakova, O., Amlie-Wolf, A., Nie, J., Cui, X., He, C., Wang, L. S., Garcia, B. A., Trojanowski, J. Q., Bonini, N. M. y Berger, S. L. (2020). An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nature Genetics, 52, 1024-1035. doi:10.1038/s41588-020-0696-0.
Nielsen, D. A., Utrankar, A., Reyes, J. A., Simons, D. D. y Kosten, T. R. (2012). Epigenetics of drug abuse: Predisposition or response. Pharmacogenomics, 13, 1149-1160. doi:10.2217/pgs.12.94.
Prini, P., Rusconi, F., Zamberletti, E., Gabaglio, M., Penna, F., Fasano, M., Battaglioli, E., Parolaro, D. y Rubino, T. (2018). Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. Journal of Psychiatry and Neurosciences, 43, 87-101. doi:10.1503/jpn.170082.
Ramos, K. N., Ramos, I. N., Zeng, Y. y Ramos, K. S. (2018). Genetics and epigenetics of pediatric leukemia in the era of precision medicine. F1000 Research, 7, F1000 Faculty Rev-1104. doi:10.12688/f1000research.14634.1.
Romieu, P., Host, L., Gobaille, S., Sandner, G., Aunis, D. y Zwiller, J. (2008). Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. The Journal of Neuroscience, 28, 9342-9348. doi:10.1523/JNEUROSCI.0379-08.2008.
Rotter, A., Bayerlein, K., Hansbauer, M., Weiland, J., Sperling, W., Kornhuber, J. y Biermann, T. (2013). CB1 and CB2 receptor expression and promoter methylation in patients with cannabis dependence. European Addiction Research, 19, 13-20. doi:10.1159/000338642.
Saad, M. H., Rumschlag, M., Guerra, M. H., Savonen, C. L., Jaster, A. M., Olson, P. D., Alazizi, A., Luca, F., Pique-Regi, R., Schmidt, C. J. y Bannon, M. J. (2019). Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. Scientific Reports, 9, 1534. doi:10.1038/s41598-018-38209-8.
Sadakierska-Chudy, A., Frankowska, M., Miszkiel, J., Wydra, K., Jastrzębska, J. y Filip, M. (2017). Prolonged induction of miR-212/132 and REST expression in rat striatum following cocaine self-administration. Molecular Neurobiology, 54, 2241-2254. doi:10.1007/s12035-016-9817-2.
Sun, N., Yu, L., Gao, Y., Ma, L., Ren, J., Liu, Y., Gao, D. S., Xie, C., Wu, Y., Wang, L., Hong, J. y Yan, M. (2021). MeCP2 epigenetic silencing of Oprm1 gene in primary sensory neurons under neuropathic pain conditions. Frontiers in Neuroscience, 15. doi:10.3389/fnins.2021.743207.
Szutorisz, H. y Hurd, Y. L. (2018). High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neuroscience & Biobehavioral Reviews, 85, 93-101. doi:10.1016/j.neubiorev.2017.05.011.
Tapocik, J. D., Barbier, E., Flanigan, M., Solomon, M., Pincus, A., Pilling, A., Sun, H., Schank, J. R., King, C. y Heilig, M. (2014). MicroRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. Journal of Neuroscience, 34, 4581-4588. doi:10.1523/Jneurosci.0445-14.2014.
Tomas-Roig, J., Benito, E., Agis-Balboa, R., Piscitelli, F., Hoyer-Fender, S., Di Marzo, V. y Havemann-Reinecke, U. (2017). Chronic exposure to cannabinoids during adolescence causes long-lasting behavioral deficits in adult mice. Addiction Biology, 22, 1778-1789. doi:10.1111/adb.12446.
Tomasiewicz, H. C., Jacobs, M. M., Wilkinson, M. B., Wilson, S. P., Nestler, E. J. y Hurd, Y. L. (2012). Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biological Psychiatry, 72, 803-810. doi:10.1016/j.biopsych.2012.04.026.
Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. y Pierce, R. C. (2013). Epigenetic inheritance of a cocaine-resistance phenotype. Nature Neuroscience, 16, 42-47. doi:10.1038/nn.3280.
Wright, K. N., Hollis, F., Duclot, F., Dossat, A. M., Strong, C. E., Francis, T. C., Mercer, R., Feng, J., Dietz, D. M., Lobo, M. K., Nestler, E. J. y Kabbaj, M. (2015). Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. The Journal of Neuroscience, 35, 8948-8958. doi:10.1523/JNEUROSCI.5227-14.2015.