Role of drug-associated environmental stimuli in the development of cross-tolerance to the tachycardic effects of nicotine and alcohol in humans
DOI:
https://doi.org/10.20882/adicciones.1385Keywords:
Cross-tolerance, classical conditioning, tobacco, nicotine, alcohol, heart rate response.Abstract
According to the Pavlovian conditioning model, drug tolerance is modulated by drug-associated environmental cues. This study evaluated the contribution of drug-associated cues in the development of cross-tolerance to the tachycardic effects of nicotine from tobacco and alcohol in human subjects. Forty undergraduate students were recruited for this experiment, and each student was randomly assigned to one of two experimental conditions. Twenty students smoked nicotine-containing cigarettes in context A and placebo cigarettes in context B, and twenty students smoked nicotine-containing cigarettes in context B and placebo cigarettes in context A. A cross-tolerance test was carried out by dividing the subjects in each condition into two subgroups (n = 10). Each subgroup consumed alcohol in both contexts (A and B). The results of this experiment showed that cross-tolerance between nicotine and alcohol was exhibited only if the cross-tolerance test was carried out in the same context where tolerance had developed to the nicotine from tobacco. These results support the hypothesis that drug-associated environmental stimuli play a modulatory role in the development of cross-tolerance between nicotine from tobacco and alcohol.References
Abburi, Ch., Wolfman, S. L., Metz, R. A. E., Kamber, R., McGehee, D. S. y McDaid, J. (2016). Tolerance to ethanol or nicotine results in increased ethanol self-administration and long-term depression in the dorsolateral striatum. eNeuro, 112, 1-40. doi:10.1523/eneuro.0112-15.2016.
Abreu-Villaça, Y., Manhaes, A., Krahe, T., Filgueiras, C. y Ribeiro-Carvalho, A. (2017). Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochemical Pharmacology, 144, 1-17. doi:10.1016/j.bcp.2017.06.113.
Adams, S. (2017). Psychopharmacology of tobacco and alcohol comorbidity: A review of current evidence. Current Addiction Reports, 4, 25-34. doi:10.1007/s40429-017-0129-z.
American Psychological Association (2010). Ethical principles of psychologists and code of conduct, amendments. Facultad de Psicología. Universidad de Buenos Aires, Argentina.
Cappell, H., Roach, C. y Poulos, C. (1981). Pavlovian control of cross-tolerance between pentobarbital and ethanol. Psychopharmacology, 74, 54-57.
Carmona-Perera, M., Sumarroca-Hernández, X., Santolaria-Rossell, A., Pérez-García, M. y Reyes del Paso, G. A. (2019). Blunted autonomic responses to emotional stimuli in alcoholism: Relevance of impulsivity. Adicciones, 31, 221-232. doi:10.20882/adicciones.1146.
Chi, H. y De Wit, H. (2003). Mecamylamine attenuates the subjective stimulant-like effects of alcohol in social drinkers. Alcoholism: Clinical and Experimental Research, 27, 780-786.
Collins, A., Burch, J., De Fiebre, Ch. y Marks, M. (1988). Tolerance to and cross tolerance between ethanol and nicotine. Pharmacology Biochemistry & Behavior, 29, 365-373.
Dafters, R. y Anderson, G. (1982). Conditioned tolerance to the tachycardia effects of ethanol in humans. Psychopharmacology, 78, 365-367.
De Fiebre, Ch. y Collins, A. (1993). A comparison of the development of tolerance to ethanol and cross-tolerance to nicotine after chronic ethanol treatment in long- and short-sleep mice. The Journal of Pharmacology and Experimental Therapeutics, 266, 1398-1406.
De Kloet, S., Mansvelder, H. y De Vries, T. (2015). Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochemical Pharmacology, 97, 425-438. doi:10.1016/j.bcp.2015.07.014.
Dohrman, D. y Reiter, C. (2003). Ethanol modulates nicotine-induced upregulation of nAChRs. Brain Research, 975, 90-98.
Drobes, D. (2002). Concurrent alcohol and tobacco dependence. Alcohol Research and Health 26, 136-142.
Duncan, P., Alici, T. y Woodward, J. (2000). Conditioned compensatory response to ethanol as indicated by locomotor activity in rats. Behavior Pharmacology, 11, 395-402.
Enggasser, J. y Wit, H. (2001). Haloperidol reduces stimulant and reinforcing effects of ethanol in social drinkers. Alcoholism, Clinical and Experimental Research, 25, 1448-1456.
Field, M. y Duka, T. (2001). Smoking expectancy mediates the conditioned responses to arbitrary smoking cues. Behavior Pharmacology, 12, 183-194.
Funk, D., Marinelli, P. W. y Lé, A. D. (2006). Biological processes underlying co-use of alcohol and nicotine: Neuronal mechanisms, cross-tolerance, and genetic factors. Alcohol Research Health, 29, 186-192.
González, V. V., Navarro, V., Migueza, G., Betancourt, R. y Laborda, M. (2016). Preventing the recovery of extinguished ethanol tolerance. Behavioural Processes, 124, 141-148. doi:10.1016/j.beproc.2016.01.004.
Le, A., Poulos, C. y Cappell, H. (1979). Conditioned tolerance to the hypothermic effect of ethyl alcohol. Science, 206, 1109-1110.
Leggio, L., Kenna, G. y Swift, R. (2008). New developments for the pharmacological treatment of alcohol withdrawal syndrome. A focus on non-benzodiazepine GABAergic medications. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32, 1106-1117.
Little, J. H. (2000). Behavioral mechanisms underlying the link between smoking and drinking. Alcohol Research & Health, 24 , 215-224.
Madden, P. A., Bucholz, K. K., Martin, N. G. y Heath, A. C. (2000). Smoking and the genetic contribution to alcohol-dependence risk. Alcohol Research Health, 24, 209-214.
Majchrzak, M. J. y Dilsaver, S. C. (1992). Chronic treatment with ethanol alters the physiological action of nicotine. Progress in Neuro-psychopharmacology & Biological Psychiatry, 16, 107-115.
McDermut, W. y Haaga, D. (1998). Effect of stage of change on cue reactivity in continuing smokers. Experimental Clinical Psychopharmacology, 6, 316-324.
Mucha, R., Pauli, P. y Angrilli, A. (1998). Conditioned responses elicited by experimentally produced cues for smoking. Canadian Journal of Physiology and Pharmacology, 76, 259-268.
Naqvi, N. y Bechara, A. (2006). Skin conductance responses are elicited by the airway sensory effects of puffs from cigarettes. Journal Psychophysiology, 61, 77-86.
Newlin, D. (1986). Conditioned compensatory response to alcohol placebo in humans. Psychopharmacology, 88, 247-251.
Oliver, J. A., Blank, M. D., Van, R. K., MacQueen, D. A., Brandon, T. H. y Drobes, D. (2013). Nicotine interactions with low-dose alcohol: Pharmacological influences on smoking and drinking motivation. Journal of Abnormal Psychology, 122, 1154-1165. doi:10.1037/a0034538.
Qureshi, A., Monk, R.L., Pennington, C.R., Li, X., Leatherbarrow, T. y Oulton J.R. (2021). Visual and auditory contextual cues differentially influence alcohol-related inhibitory control. Adicciones, 33, 7-18. doi:10.20882/adicciones.1091.
Ruiz, I., Vila, J. y Miranda, F. (2010). El papel de los procesos asociativos en la manifestación de fenómenos relacionados con la adicción a las drogas. Anuario de Investigación en Adicciones, 11, 86-98.
Siegel, S. (1977). Morphine tolerance acquisition as an associative process. Journal Experimental Psychology: Animal Behavior Processes, 3, 1-13.
Siegel, S. (1979). The role of conditioning in drug tolerance and addiction (pp.143-168). En J. D. Keehn (Ed.) Psychopathology in animals: Research and treatment implications. New York: Academic Press.
Siegel, S., Baptista, M., Kim, J., McDonald, R. y Weise-Kelly, L. (2000). Pavlovian psychopharmacology: The basis of tolerance. Experimental and Clinical Psychopharmacology, 8, 276-293.
Siegel, S. y Ramos, B. (2002). Applying laboratory research: Drug anticipation and the treatment of drug addiction. Experimental and Clinical Psychopharmacology, 10, 162-183.
Sillero-Rejon, C., Maynard, O. e Ibáñez-Zapata, J. A. (2020). Visual attention to alcohol labels: an exploratory eye-tracking experiment. Adicciones, 32, 202-207. doi:10.20882/adicciones.1207.
Sociedad Mexicana de Psicología (2009). Código ético del psicólogo. México: Trillas.
Taslim, N., Soderstrom, K. y Saeed, D.M. (2011). Role of mouse cerebellar nicotinic acetylcholine receptor (nAChR) and subtypes in the behavioral cross-tolerance between nicotine and ethanol-induced ataxia. Behavioral Brain Research, 217, 282-292. doi:10.1016/j.bbr.2010.10.026.
Vila, J., Ruiz, I., Trejo, F. y Miranda, F. (2013). Participación de los factores de condicionamiento pavloviano en el desarrollo de tolerancia a los efectos cardiovasculares producidos por la nicotina del tabaco. Investigación Psicológica. Revista de Psicología de la Universidad de Chile, 22, 1-14. doi:10.5354/0719-0581.2014.27715.
White, A., Roberts, D. y Best, P. (2002). Context-specific tolerance to the ataxic effects of alcohol. Pharmacology Biochemistry and Behavior, 72, 107-110.


