Effects of omega-3 fatty acids on CB1 cannabinoid receptor localization in the hippocampal CA1 region following alcohol withdrawal in adolescent male mice
Keywords:
Ethanol, adolescence, endocannabinoid system, neurons, glia, polyunsaturated fatty acids, central nervous systemAbstract
Adolescent binge drinking has detrimental effects on brain function, leading to long-lasting impairments in synaptic plasticity, cognition, and behavior. These effects are mediated, in part, by disruption of the endocannabinoid system (ECS) and its cannabinoid type-1 (CB1) receptor. Alcohol consumption also depletes omega-3 fatty acids, which are essential for maintaining cell membrane integrity and supporting brain function. This depletion impairs synaptic plasticity by disrupting endocannabinoid signaling and reducing CB1 receptor expression and function. Conversely, enhancement of the ECS can restore brain function and reverse the loss of endocannabinoid-dependent synaptic plasticity associated with omega-3 deficiency. Notably, omega-3 supplementation has been shown to restore CB1 receptor expression in specific brain regions in adult mice following adolescent alcohol exposure. However, despite the established interplay between alcohol, omega-3, and the ECS, the direct impact of omega-3 supplementation on the subcellular localization of CB1 receptors after alcohol exposure remains poorly understood. In this study, we used immunoelectron microscopy to investigate whether omega-3 supplementation influences CB1 receptor distribution in the hippocampal CA1 region following alcohol withdrawal in adolescent male mice. Our results demonstrate that omega-3 partially restore the excitatory/inhibitory balance disrupted by alcohol, as evidenced by an increased number of excitatory terminals and a significant reduction in inhibitory terminals. However, the distribution and density of CB1 receptors within neuronal and glial compartments remain unchanged following alcohol exposure and omega-3 supplementation. These findings highlight novel structural effects of omega-3 in mitigating alcohol-induced brain damage.References
Abrahao, K. P., Salinas, A. G. y Lovinger, D. M. (2017). Alcohol and the brain: neuronal molecular targets, synapses and circuits. Neuron, 96(6), 1223–1238. https://doi.org/10.1016/j.neuron.2017.10.032
Achicallende, S., Bonilla-Del Río, I., Serrano, M., Mimenza, A., Lekunberri, L., Anaut-Lusar, I., Puente, N., Gerrikagoitia, I. y Grandes, P. (2022). GLAST versus GFAP as astroglial marker for the subcellular study of cannabinoid CB1 receptors in astrocytes. Histochemistry and Cell Biology, 158(6), 561–569. https://doi.org/10.1007/s00418-022-02139-4
Aguilera García, C., Navarro Alarcón, M., Alonso Aperte, E., Álvarez Mercado, A. I., Carvajales, P. A. y Arredondo Olguín, M. (2010). Tratado de Nutrición. Tomo I. Bases Fisiológicas y bioquímicas de la Nutrición (2nd ed.). Editorial Médica Panamericana.
Akbar, M., Baick, J., Calderon, F., Wen, Z. y Kim, Y. (2006). Ethanol promotes neuronal apoptosis by inhibiting phosphatidylserine accumulation. Journal of Neuroscience Research, 83, 432–440. https://doi.org/10.1002/jnr
Arzua, T., Yan, Y., Liu, X., Dash, R. K., Liu, Q.-S. y Bai, X. (2024). Synaptic and mitochondrial mechanisms behind alcohol-induced imbalance of excitatory/inhibitory synaptic activity and associated cognitive and behavioral abnormalities. Translational Psychiatry, 14, 51. https://doi.org/10.1038/s41398-024-02748-8
Basavarajappa, B., Cooper, T. B. y Hungund, B. L. (1998). Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Research, 793, 212–218. https://doi.org/10.1016/S0006-8993(98)00175-9
Bazinet, R. P. y Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15(12), 771–785. https://doi.org/10.1038/nrn3820
Bondi, C., Taha, A., Tock, J., NK, T., CHeon, Y., Torres, G., Rapoport, R. y Moghaddam, B. (2014). Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biological Psychiatry, 75(1). https://doi.org/10.1016/j.biopsych.2013.06.007
Bonilla-Del Rίo, I., Puente, N., Peñasco, S., Rico, I., Gutiérrez-Rodrίguez, A., Elezgarai, I., Ramos, A., Reguero, L., Gerrikagoitia, I., Christie, B. R., Nahirney, P. y Grandes, P. (2019). Adolescent ethanol intake alters cannabinoid type-1 receptor localization in astrocytes of the adult mouse hippocampus. Addiction Biology, 24(2), 182–192. https://doi.org/10.1111/adb.12585
Borgonetti, V., Vozella, V., Ware, T., Cruz, B., Bullard, R., Cravatt, B. F., Galeotti, N. y Roberto, M. (2024). Excessive alcohol intake produces persistent mechanical allodynia and dysregulates the endocannabinoid system in the lumbar dorsal root ganglia of genetically-selected Marchigian Sardinian alcohol-preferring rats. Pharmacological Research, 209,107462. https:// doi.org/10.1016/j.phrs.2024.107462
Calder, P. C. (2016). Docosahexaenoic Acid. Annals of Nutrition and Metabolism, 69(1), 8–21. https://doi.org/10.1159/000448262
Cao, D., Kevala, K., Kim, J., Moon, H., Beom Jun, S., Lovinger, D. y Kim, H. (2009). Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. Journal of Neurochemistry, 111(2), 510–521. https://doi.org/10.1111/j.1471-4159.2009.06335.x
Ceccarini, J., Hompes, T., Verhaeghen, A., Casteels, C., Peuskens, H., Bormans, G., Claes, S. y Van Laere, K. (2014). Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. Journal of Neuroscience, 34(8), 2822–2831. https://doi.org/10.1523/JNEUROSCI.0849-13.2014
Champeil-Potokar, G., Hennebelle, M., Latour, A., Vancassel, S. y Denis, I. (2016). DHA prevents corticosterone-induced changes in astrocyte morphology and function. Journal of Neurochemistry, 136, 1155–1167. ,107462. https:// doi.org/10.1016/j.phrs.2024.107462
Cservenka, A. y Brumback, T. (2017). The burden of binge and heavy drinking on the brain: Effects on adolescent and young adult neural structure and function. Frontiers in Psychology, 8, 1111. https://doi.org/10.3389/fpsyg.2017.01111
Das, M. y Das, S. (2019). Docosahexaenoic acid (DHA) induced morphological differentiation of astrocytes is associated with transcriptional upregulation and endocytosis of β 2-AR. Molecular Neurobiology, 56, 2685–2702. https://doi.org/10.1007/s12035-018-1260-0
Donovan, J. E. (2009). Estimated blood alcohol concentrations for child and adolescent drinking and their implications for screening instruments. Pediatrics, 123(6), 975–981. https://doi.org/10.1542/peds.2008-0027
Farooqui, A. A. (2012). Lipid mediators and their metabolism in the brain. Springer. https://doi.org/10.1007/978-1-4419-9940-5
Feltham, B. A., Louis, X. L., Eskin, M. N. A. y Suh, M. (2020). Docosahexaenoic acid: outlining the therapeutic nutrient potential to combat the prenatal alcohol-induced insults on brain development. Advances in Nutrition, 11(3), 724–735. https://doi.org/10.1093/advances/nmz135
García-Baos, A., Alegre-Zurano, L., Cantacorps, L., Martín-Sánchez, A. y Valverde, O. (2021). Role of cannabinoids in alcohol-induced neuroinflammation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, 110054. https://doi.org/10.1016/j.pnpbp.2020.110054
Gonzalez, S., Cascio, M. G., Fernandez-Ruiz, J., Fezza, F., Di Marzo, V. y Ramos, J. (2002). Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Research, 954(1), 73–81. https:// doi.org/10.1016/s0006-8993(02)03344-9
Haidary, M., Ahmadi-Soleimani, S. M., Ghofraninezad, M., Azhdari-Zarmehri, H. y Beheshti, F. (2024). Omega-3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses. International Journal of Developmental Neuroscience, 84, 423–433. https://doi.org/10.1002/jdn.10336
Hashimoto, M., Katakura, M., Tanabe, Y., Al Mamun, A., Inoue, T., Hossain, S., Arita, M. y Shido, O. (2015). N-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1851, 203–209. https://doi.org/10.1016/j.bbalip.2014.10.009
Hirvonen, J., Zanotti-Fregonara, P., Umhau, J. C., George, D. T., Rallis-Frutos, D., Lyoo, C. H., Li, C. T., Hines, C. S., Sun, H., Terry, G. E., Morse, C., Zoghbi, S. S., Pike, V. W., Innis, R. B. y Heilig, M. (2013). Reduced cannabinoid CB 1 receptor binding in alcohol dependence measured with positron emission tomography. Molecular Psychiatry, 18(8), 916–921. https://doi.org/10.1038/mp.2012.100
Jeong, Y., Huh, N., Lee, J., Yun, I., Lee, J., Lee, I. y Jung, M. (2018). Role of the hippocampal CA1 region in incremental value learning. Scientific Reports, 8(1), 9870. https://doi.org/10.1038/s41598-018-28176-5
Joffre, C., Rey, C. y Layé, S. (2019). N-3 polyunsaturated fatty acids and the resolution of neuroinflammation. Frontiers in Pharmacology, 10, 1022. https://doi.org/10.3389/fphar.2019.01022
Kang, E., Yun, B., Cha, J., Suk, H. y Shin, E. (2024). Neurodevelopmental imprints of sociomarkers in adolescent brain connectomes. Scientific Reports, 14(1), 20921. https://doi.org/10.1038/s41598-024-71309-2
Keshavan, M., Giedd, J., Lau, J., Lewis, D. y Paus, T. (2014). Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry, 1(7), 549–558. https://doi.org/10.1016/S2215-0366(14)00081-9
Kim, H. Y. (2008). Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. Chemistry and Physics of Lipids, 153(1), 34–46. https://doi.org/10.1016/j.chemphyslip.2008.02.014
Kim, H. Y. y Spector, A. (2018). N-Docosahexaenoylethanolamine: a neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Molecular Aspects of Medicine, 64, 34–44. https://doi.org/10.1016/j.mam.2018.03.004
Kim, J., Carlson, M. E., Kuchel, G. A., Newman, J. W. y Watkins, B. A. (2016). Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. International Journal of Obesity, 40, 129–137. https://doi.org/10.1038/ijo.2015.135
Kunos, G. (2020). Interactions between alcohol and the endocannabinoid system. Alcoholism: Clinical and Experimental Research, 44(4), 790–805. https://doi.org/10.1111/acer.14306
Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., De Smedt-Peyrusse, V., Labrousse, V. F., Bretillon, L., Matute, C., Rodríguez-Puertas, R., Layé, S. y Manzoni, O. J. (2011). Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nature Neuroscience, 14(3), 345–350. https://doi.org/10.1038/nn.2736
Lovinger, D. M. y Abrahao, K. P. (2018). Synaptic plasticity mechanisms common to learning and alcohol use disorder. Learning and Memory, 25, 425–434. https://doi.org/10.1101/lm.046722.117
Lovinger, D. M. y Alvarez, V. (2017). Alcohol and basal ganglia circuitry: animal models. Neuropharmacology, 1(122), 46–55. https://doi.org/10.1016/j.neuropharm.2017.03.023
Lovinger, D. M. y Roberto, M. (2013). Synaptic effects induced by alcohol. Current Topics in Behavioral Neurosciences, 13, 31–86. https://doi.org/10.1007/7854_2011_143
Lu, H. y Mackie, K. (2021). Review of the endocannabinoid system. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(6), 607–615. https://doi.org/10.1016/j.bpsc.2020.07.016
Maccioni, P., Colombo, G. y Carai, M. (2010). Blockade of the cannabinoid CB1 receptor and alcohol dependence: Preclinical evidence and preliminary clinical data. CNS & Neurological Disorders - Drug Targets, 9, 55–59. https://doi.org/10.2174/187152710790966623
Metna-Laurent, M. y Marsicano, G. (2015). Rising stars modulation of brain functions by astroglial type-1 cannabinoid receptors. GLIA, 63(3), 353–364. https://doi.org/10.1002/glia.22773
Ministerio de Salud. (2025). Estudes 2025.
Navarrete, F., Garcia-Gutierrez, M. S., Gasparyan, A., Navarro, D., Lopez-Picon, F., Morcuende, A., Femenía, T. y Manzanares, J. (2022). Biomarkers of the endocannabinoid system in substance use disorders. Biomolecules, 12(3), 396. https://doi.org/10.3390/biom12030396
Ortiz, S., Oliva, J. M., Pérez-Rial, S., Palomo, T. y Manzanares, J. (2004). Chronic ethanol consumption regulates cannabinoid CB1 receptor gene expression in selected regions of rat brain. Alcohol and Alcoholism, 39(2), 88–92. https://doi.org/10.1093/alcalc/agh036
Patten, A., Brocardo, P. S. y Christie, B. R. (2013a). Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. Journal of Nutritional Biochemistry, 24(5), 760–769. https://doi.org/10.1016/j.jnutbio.2012.04.003
Patten, A., Sickmann, H. M., Dyer, R. A., Innis, S. M. y Christie, B. R. (2013b). Omega-3 fatty acids can reverse the long-term deficits in hippocampal synaptic plasticity caused by prenatal ethanol exposure. Neuroscience Letters, 551, 7–11. https://doi.org/10.1016/j.neulet.2013.05.051
Pava, M. y Woodward, J. (2012). A Review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol, 46(3), 185–204. https://doi.org/10.1016/j.alcohol.2012.01.002.A
Peñasco, S., Rico-Barrio, I., Puente, N., Fontaine, C. J., Ramos, A., Reguero, L., Gerrikagoitia, I., Rodríguez de Fonseca, F., Barrondo, S., Aretxabala, X., García del Caño, G., Elezgarai, I., Nahirney, P., Christie, B. R. y Grandes, P. (2020). Intermittent ethanol exposure during adolescence impairs cannabinoid type 1 receptor- dependent long-term depression and recognition memory in adult mice. Neuropsychopharmacology, 45, 309–318. https://doi.org/10.1038/s41386-019-0530-5
Puente, N., Reguero, L., Elezgarai, I., Canduela, M. J., Mendizabal-Zubiaga, J., Ramos-Uriarte, A., Fernández-Espejo, E. y Grandes, P. (2015). The transient receptor potential vanilloid-1 is localized at excitatory synapses in the mouse dentate gyrus. Brain Structure and Function, 220(2), 1187–1194. https://doi.org/10.1007/s00429-014-0711-2
Rhodes, J. S., Best, K., Belknap, J. K., Finn, D. A. y Crabbe, J. C. (2005). Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiology and Behavior, 84, 53–63. https://doi.org/10.1016/j.physbeh.2004.10.007
Rico-Barrio, I., Peñasco, S., Lekunberri, L., Serrano, M., Egaña-Huguet, J., Mimenza, A., Soria-Gomez, E., Ramos, A., Buceta, I., Gerrikagoitia, I., Mendizabal-Zubiaga, J., Elezgarai, I., Puente, N. y Grandes, P. (2021). Environmental enrichment rescues endocannabinoid-dependent synaptic plasticity lost in young adult male mice after ethanol exposure during adolescence. Biomedicines, 9(7), 825. https://doi.org/10.3390/biomedicines9070825
Rico-Barrio, I., Peñasco, S., Puente, N., Ramos, A., Fontaine, C. J., Reguero, L., Giordano, M. E., Buceta, I., Terradillos, I., Lekunberri, L., Mendizabal-Zubiaga, J., Rodríguez de Fonseca, F., Gerrikagoitia, I., Elezgarai, I. y Grandes, P. (2019). Cognitive and neurobehavioral benefits of an enriched environment on young adult mice after chronic ethanol consumption during adolescence. Addiction Biology, 24(5), 969-980. https://doi.org/10.1111/adb.12667
Risher, M. L., Fleming, R. L., Risher, C., Miller, K., Klein, R., Wills, T., Acheson, S., Moore, S., Wilson, W., Eroglu, C. y Swartzwelder, H. S. (2015). Adolescent intermittent alcohol exposure: persistence of structural and functional hippocampal abnormalities into adulthood. Alcoholism: Clinical and Experimental Research, 39(6), 989–997. https://doi.org/10.1111/acer.12725
Sabeti, J. (2011). Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma-1 receptor activation in hippocampal CA1 neurons. Alcoholism: Clinical and Experimental Research, 35(5), 885–904. https://doi.org/10.1111/j.1530-0277.2010.01419.x
Sanchez-Marin, L., Flores-Lopez, M., Pastor, A., Gavito, A., Suarez, J., De la Torre, R., Pavón, F., Rodriguez de Fonseca, F. y Serrano, A. (2022). Acute stress and alcohol exposure during adolescence results in an anxious phenotype in adulthood: Role of altered glutamate/endocannabinoid transmission mechanisms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 8(113), 110460. https://doi.org/10.1016/j.pnpbp.2021.110460
Sanz-Martos, A. B., Fuentes-Verdugo, E., Merino, B., Morales, L., Pérez, V., Capellán, R., Pellón, R., Miguéns, M. y del Olmo, N. (2023). Schedule-induced alcohol intake during adolescence sex dependently impairs hippocampal synaptic plasticity and spatial memory. Behavioural Brain Research, 452, 114576. https://doi.org/10.1016/j.bbr.2023.114576
Serrano, A., Pavon, F., Buczynsky, M., Schlosburg, J., Natividad, L. A., Polis, I., Stouffer, D., Zorrilla, E., Roberto, M., Cravatt, B., Martin-Fardon, R., Rodriguez de Fonseca, F. y Parsons, L. H. (2018). Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake. Neuropsychopharmacology, 43(9), 1840–1850. https://doi.org/10.1038/s41386-018-0055-3
Serrano, A., Rivera, P., Pavon, F., Decara, J., Suarez, J., Rodriguez de Fonseca, F. y Parsons, L. (2012). Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcoholism: Clinical and Experimental Research, 36(6), 984–994. https://doi.org/10.1111/j.1530-0277.2011.01686.x
Serrano, M., Rico-Barrio, I. y Grandes, P. (2023). The effect of omega-3 fatty acids on alcohol-induced damage. Frontiers in Nutrition, 10, 1068343. https://doi.org/10.3389/fnut.2023.1068343
Serrano, M., Saumell-Esnaola, M., Ocerin, G., García del Caño, G., Puente, N., Sallés, J., Rodriguez de Fonseca, F., Rodriguez Arias, M., Guerricagoitia, I. y Grandes, P. (2024). Impact of omega-3 on endocannabinoid system expression and function, enhancing cognition and behavior in male mice. Nutrients, 16(24), 4344. https://doi.org/10.3390/nu16244344
Serrano, M., Saumell-Esnaola, M., Ocerin, G., García del Caño, G., Soria-Gómez, E., Mimenza, A., Puente, N., Bonilla-Del Rίo, I., Ramos-Uriarte, A., Reguero, L., Christie, B. R., Rodriguez De Fonseca, F., Rodriguez Arias, M., Gerrikagoitia, I. y Grandes, P. (2025). Omega-3 fatty acids mitigate long-lasting disruption of the endocannabinoid system in the adult mouse hippocampus following adolescent binge drinking. International Journal of Molecular Sciences, 26(12), 5507. https://doi.org/10.3390/ijms26125507.
Spear, L. P. (2018). Effects of adolescent alcohol consumption on the brain and behaviour. Nature Reviews Neuroscience, 19(4), 197–214. https://doi.org/10.1038/nrn.2018.10
Stopponi, S., Fotio, Y., Domi, A., Borruto, A., Natividad, L., Roberto, M., Ciccocioppo, R. y Cannella, N. (2018). Inhibition of fatty acid amyde hydrolase in the central amygdala alleviates co-morbid expression of innnate anxiety and excessive alcohol intake. Addiction Biology, 23(6), 1223–1232. https://doi.org/10.1111/adb.12573
Takamiya, S., Shiotani, K., Ohnuki, T., Osako, Y., Tanisumi, Y., Yuki, S., Manabe, H., Hirokawa, J. y Sakurai, Y. (2021). Hippocampal CA1 neurons represent positive feedback during the learning process of an associative memory task. Frontiers in Systems Neuroscience, 15, 718619. https://doi.org/10.3389/fnsys.2021.718619
Vetreno, R. P. y Crews, F. T. (2015). Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Frontiers in Neuroscience, 9, 1–12. https://doi.org/10.3389/fnins.2015.00035
Vinod, K. Y., Yalamanchili, R., Xie, S., Cooper, T. B. y Hungund, B. L. (2006). Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. Neurochemistry International, 49, 619–625. https://doi.org/10.1016/j.neuint.2006.05.002
Wolfe, S., Vozella, V. y Roberto, M. (2022). The synaptic interactions of alcohol and the endogenous cannabinoid system. Alcohol Research, 42(1), 03. https://doi.org/10.35946/arcr.v42.1.03


