Interactions and consequences of the combined use of alcohol and cocaine: an update on cocaethylene

Authors

  • Raul Pastor Lab. Psicobiología, Universitat Jaume I. Enviar correspondencia: D. Raul Pastor Dep. Psicología Clínica, básica y psicobiología. Facultad de Ciencias Humanas y Sociales. Universitat Jaume I. Avd. Sos Baynat sn. 12071 Castelló.
  • Juan José Llopis Área de Psicobiología, Universitat Jaume I.
  • Abel Baquero Centro de Encuentro y Acogida, Fundacio Salut i Comunitat.

DOI:

https://doi.org/10.20882/adicciones.439

Keywords:

Cocaine, Alcohol, Cocaethylene, Toxicity, Abuse

Abstract

Patients who request treatment for cocaine use and alcohol abuse present differences from those who use cocaine only. Ingestion of alcohol as a detonator of craving and the compulsive search behaviour of cocaine leads to a greater loss of control on use, more social problems, more risk and more antisocial behaviours. Hypothesis: the presence of a metabolite known as cocaethylene, resulting from the simultaneous use of alcohol and cocaine could explain the greater toxicity and compulsivity of these episodes. Methodology: A review was made of the scientific literature on the consequences of alcohol-cocaine interaction. Results: The alcohol-cocaine metabolic interaction increases the potential toxicity of both substances taken separately. The cocaethylene acts as a toxic per se. Its presence in the organism provokes a higher potential risk in the simultaneous consumption of alcohol and cocaine. There are more significant concentrations of cocaethylene when alcohol is administered prior to the cocaine. The results of the basic research show that a large part of the differences observed in the action of both substances, when ingested simultaneously, could be a result of modifications in the pharmacokinetics of said drugs and of the potential action of the cocaethylene, which, added to the respective actions of alcohol and cocaine, could be the basis of the increased severity observed in clinical profiles.

References

Andrews, P. (1997). Cocaethylene toxicity. J Addict Dis 16:

-84.

Baumann, M.H.; Horowitz, J.M.; Kristal, M.B. and Torres, G.

(1998). Effects of cocaethylene on dopamine and serotonin

synthesis in Long-Evans and Sprague Dawley

brains. Brain Research 804: 316-319.

Brzezinski, M.R.; Abraham, T.L.; Stone, C.L.; Dean, R.A. and

Bosron, W.F. (1994). Purification and characterization of a human liver cocaine carbolylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem Pharmacol 48: 1747-1755.

Calafat, A.; Juan, M.; Becoña, E.; Fernández, C.; Gil, E. y Llopis,

J.J. (2001). Vida social de la cocaína. Monografía cocaína. Adicciones. Vol 13, suplemento 2, pp 61-104.

Dean, R.A.; Christian, C.D.; Sample, R.H.B. and Bosron W.F.

(1991). Human liver cocaine esterases: Ethanol-mediated

formation of ethylcocaine. FASEB J 5: 2735-2739.

Dean, R.A.; Bosron, W.F.; Zachman, F.M. and Brzezinski, M.R. (1997.) Effects of ethanol on cocaine metabolism and disposition in the rat. NIDA Research monograph 173: 35-47.

Farré, M.; de la Torre, R.; Llorente, M.; Lamas, X.; Ugena, B.;

Segura, J. and Camí, J. (1993). Alcohol and cocaine interactions in humans . J Pharmacol Exp Ther 266:1364-1373.

Hayase, T.; Abiru, H.; Yamamoto, Y.; Yamamoto, K. and Fukui,

Y. (1998). Brain _-Endorphin inmumoreactivity as an index of cocaine and combined cocaine-ethanol toxicities. Pharmacology Biochemistry and Behavior 60: 263-270.

Hearn, W.L.; Flynn, D.D.; Hime, G.W.; Rose, S.; Confino, J.C;

Mantero-Atienza, E.; Wetli, C.W. and Mash, D.C. (1991). Cocaethylene: A unique cocaine metabolite displays high affinity for the dopamine transporter. J Neurochem 56: 698-701.

Horger, B.A.; Taylor, J.R.; Elsworth, J.D.; Jatlow, P.I.; and

Roth, R.H. (1996). Sensitization to the locomotor activating

effects of cocaine following cocaethylene-preexposure. Brain Res 733: 133-137.

Iyer, R.N.; Nobiletti, J.B.; Jatlow, P.I. and Bradberry, C.W.

(1995). Cocaine and cocaethylene: effects on extracellular dopamine in the primate. Psychopharmacology 120: 105-110.

Jover, R.; Ponsoda, X.; Gómez-Lechón, M.J.; Herrero, C.; del

Pino, J. and Castell J.V. (1991). Potentiaton of cocaine hepatotoxicity by ethanol in human hepatocytes. Toxicol Appl Pharmacol 107: 526-534.

Jatlow, P.; McCance, E.F.; Bradberry, C.W.; Elsworth, J.D.; Taylor, J.R. and Roth, R.H. (1996). Alcohol plus cocaine: the whole is more than the sum of its parts. Ther Drug Monit 18: 460-464.

Landry, M.J. (1992). An overview of cocaethylene, an alcohol-

derived, psychoactive, cocaine metabolite. J Psychoactive

Drugs 24: 273-276.

Lindholm, S.; Rosin, A.; Dahlin, I.; Georgieva, J. and Franck,

J. (2001). Ethanol administation potentiates cocaineinduced

dopamine levels in the rat nucleus accumbens. Brain Research 915: 176-184.

McCance-Katz, E.F.; Price, L.H..; McDougle, C.J.; Marek, G.J.; Kosten, T.R. and Jatlow, P. (1991). Cocaethylene formation following sequential administration of cocaine and ethanol to humans: Pharmacological, phsiological, and behavioral studies. Soc Neurosci Abs 17: 890.

O.E.D.T. (2001) Informe anual sobre el problema de la drogodependencia en la Unión Europea 2001. Oficina de publicaciones oficiales de las Comunidades Europeas.

Luxemburgo.

Pan, W.J. and Hedaya, M.A. (1999). Cocaine and alcohol interactions in the rat: effect of cocaine and alcohol pretreatments on cocaine pharmacokinetics and pharmacodynamics. J Pharma Sci 88(12): 1266-1274.

Perez-Reyes, M. and Jeffcoat, A.R. (1992). Ethanol/cocaine

and coaethylene concentrations and their relationship to subjetive and cardiovascular effects. Life Sci 51: 553-563.

Perez-Reyes, M. (1994). The order of drug administration: its

effects on the interactio between cocaiene and ethanol. Life Sci 55: 541-550.

Pirozhkov, S. V.; Watson, R. R. and Chen, G. (1993). Ethanol

enhances inmunosuppression induced by cocaine. Alcohol. Alcohol Suppl 2: 75-82.

P.N.D. (2001). Informe sobre la situación de la Cocaína en

España. Abril 2001. Delegación del Gobierno para el Plan Nacional sobre Drogas. PNSD/Internet. Ministerio de Interior.

Prinssen, E.P.; Kleven, M.S. and Koek, W. (1996). Repeated

administration of cocaethylene induces context-dependent

sensitization to its locomotor effects. Psychopharmacology

: 300-305.

Qiu, Z.; and Morgan, J.P. (1993). Differential effects of cocaine

and cocaethylene on intracellular Ca2+ and myocardial contraction in cardiac myocytes. Br. J. Pharmacol Jun 109: 293-298.

Raven, M. A.; Necessary, B.D.; Danluck, D.A. and Ettenberg,

A. (2000) Comparison of the reinforcing and anxiogenic effects of intravenous cocaine and cocaethylene. Exp Clin Psychopharmacol 8: 117-124.

Roberts, S.M.; Roth, L.; Harbison, R.D. and James, R.C. (1992). Cocaethylene hepatotoxicity in mice. Biochem Pharmacol May 8;43: 1989-1995.

Rose, S.; Hearn, W.L.; Hime, G.W.; Wetli, C.V.; Ruttenber, A.J.; and Mash, D.C. (1990). Cocaine and cocaethylene concentrations in human post mortem cerebral cortex. Neurosci Abs 16: 11-17.

Signs, S.A.; Dickey-White, H.I.; Vanek, V.W.; Perch, S.; Schechter, M.D.; and Kulics, A.T. (1996). The formation of cocaethylene and clinical presentation of ED patients testing positive for the use of cocaine and ethanol. Am J Emerg Med Nov 14: 665-670.

Singer, L.T.; Arendt, R.; Minnes, S.; Farkas, K. and Salvator, A. (2000). Neurobehavioral outcomes of cocaine-exposed infants. Neurotoxicologycal Terotology 22: 653-66.

Schechter, M.D. (1995). Cocaethylene produces conditioned

place preference in rats. Pharmacol Biochem Behav 51:

-552.

Schechter, M.D. and Meehan, S.M. (1995). The lethal effects

of ethanol and cocaine and their combinations in mice: implications for cocaethylene formation. Pharmacol Biochem Behav 52: 245-248.

Spealman, R.D.; Madras, B.K. and Bergman, J. (1989). Effects of cocaine and related drugs in nonhuman primates. II. Stimulant effects on schedule-controlled behavior. J Pharmacol Exp Ther 252: 142-149.

Torres, G; Horowitz, J.M.; Lee, S. and Rivier, C. (1996). Cocaethylene stimulates the secretion of ACTH and corticosterone and the transcriprional activation of hypothalamic

NGFI-B. Brain Res Mol Brain 43: 225-232.

Vanek, V.W.; Dickey-White, H.I.; Schechter, M.D.; Buss, T.

and Kulics, A.T. (1996). Concurrent use of cocaine and alcohol by patients treated in the emergency deparment. Ann Emerg Med, Nov 28: 508-514.

Wilson, L.D.; Jeromin, J.; Garvey, L. and Dorbandt, A. (2001). Cocaine, ethanol, and cocaethylene cardiotoxity in an animal model of cocaine and ethanol abuse. Acad Emerg Med 8: 211-222.

Xu, Y. Q.; Crumb, W. J. and Clarkson, C. W. (1994). Cocaethylene a metabolite of cocaine and ethanol, is a potent blocker of cardiac sodium channels. J Pharmacol ExpTher 27: 319-325.

Published

2003-04-15

Issue

Section

Review