Pérdida del control de la ingesta alimentaria y flexibilidad cognitiva: Participación de la microbiota intestinal

Autores/as

  • Solveiga Samulenaite Pompeu Fabra University
  • Aurelijus Burokas Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
  • José Manuel Fernández-Real Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
  • Jordi Mayneris-Perxachs Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
  • Elena Martín-García Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
  • Rafael Maldonado Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; INSERM U1329, Translational Neurosciene and Psyquiatry, CRBS, Strasbourg, France.

Palabras clave:

Adicción a la comida, obesidad, microbiota intestinal, deterioro cognitivo, trasplante de microbiota fecal

Resumen

La pérdida del control de la ingesta alimentaria es un factor crucial en el desarrollo de la obesidad. Una alteración cognitiva importante asociada con la pérdida del control de la ingesta alimentaria y la obesidad es el deterioro de la flexibilidad cognitiva y el control inhibitorio. Un número cada vez mayor de estudios confirman que la microbiota intestinal contribuye significativamente a la pérdida del control de la ingesta alimentaria, la obesidad y la función cognitiva. En base a estos datos, hemos investigado si la transferencia de microbiota intestinal de humanos con obesidad/normopeso y flexibilidad cognitiva deteriorada/no deteriorada podría afectar sustancialmente esta respuesta conductual en ratones expuestos a una dieta obesogénica frente a una dieta estándar. Los ratones fueron tratados previamente con un cóctel de antibióticos y luego recibieron un trasplante de microbiota intestinal de humanos. Posteriormente, se realizaron diferentes test de comportamiento para evaluar la flexibilidad cognitiva como una medida del control inhibitorio.  El tratamiento con antibióticos deterioró significativamente la memoria a corto plazo en ratones, como se ha informado previamente. Es importante destacar que los ratones que recibieron microbiota de sujetos con alta y baja flexibilidad cognitiva modificaron su rendimiento de memoria a corto y largo plazo en función de la exposición a la dieta. En resumen, este estudio muestra que la microbiota intestinal es un factor que contribuye de manera importante a la flexibilidad cognitiva, lo que puede abrir nuevas estrategias terapéuticas para combatir la pérdida de control de la ingesta alimentaria y las comorbilidades metabólicas asociadas.

Biografía del autor/a

Solveiga Samulenaite, Pompeu Fabra University

Affiliations:  Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.  

Aurelijus Burokas, Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania

Affiliation: Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania;

José Manuel Fernández-Real , Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.

Affiliations: Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.

Jordi Mayneris-Perxachs, Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.

Affiliations: Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain. 

Elena Martín-García, Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

Affiliations: Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

Rafael Maldonado , Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; INSERM U1329, Translational Neurosciene and Psyquiatry, CRBS, Strasbourg, France.

Affiliations: Laboratory of Neuropharmacology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; INSERM U1329, Translational Neurosciene and Psyquiatry, CRBS, Strasbourg, France.

Citas

Alboni, S., Micioni Di Bonaventura, M. V., Benatti, C., Giusepponi, M. E., Brunello, N. y Cifani, C. (2017). Hypothalamic expression of inflammatory mediators in an animal model of binge eating. Behavioural Brain Research, 320, 420–430. https://doi.org/10.1016/J.BBR.2016.10.044

Arnoriaga-Rodríguez, M., Mayneris-Perxachs, J., Burokas, A., Contreras-Rodríguez, O., Blasco, G., Coll, C., Biarnés, C., Miranda-Olivos, R., Latorre, J., Moreno-Navarrete, J. M., Castells-Nobau, A., Sabater, M., Palomo-Buitrago, M. E., Puig, J., Pedraza, S., Gich, J., Pérez-Brocal, V., Ricart, W., Moya, A.,… Fernández-Real, J. M. (2020a). Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids. Cell Metabolism, 32(4), 548-560.e7. https://doi.org/10.1016/J.CMET.2020.09.002

Arnoriaga-Rodríguez, M., Mayneris-Perxachs, J., Burokas, A., Pérez-Brocal, V., Moya, A., Portero-Otin, M., Ricart, W., Maldonado, R. y Fernández-Real, J. M. (2020b). Gut bacterial ClpB-like gene function is associated with decreased body weight and a characteristic microbiota profile. Microbiome, 8(1). https://doi.org/10.1186/S40168-020-00837-6

Arnoriaga-Rodríguez, M., Mayneris-Perxachs, J., Contreras-Rodríguez, O., Burokas, A., Ortega-Sanchez, J. A., Blasco, G., Coll, C., Biarnés, C., Castells-Nobau, A., Puig, J., Garre-Olmo, J., Ramos, R., Pedraza, S., Brugada, R., Vilanova, J. C., Serena, J., Barretina, J., Gich, J., Pérez-Brocal, V.,… Fernández-Real, J. M. (2021). Obesity-Associated Deficits in Inhibitory Control Are Phenocopied to Mice through Gut Microbiota Changes in One-Carbon and Aromatic Amino Acids Metabolic Pathways. Gut, 0, 26. https://doi.org/10.1136/gutjnl-2020-323371

Berding, K., Vlckova, K., Marx, W., Schellekens, H., Stanton, C., Clarke, G., Jacka, F., Dinan, T. G. y Cryan, J. F. (2021). Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 12(4), 1239. https://doi.org/10.1093/ADVANCES/NMAA181

Bjursell, M., Gerdin, A. K., Lelliott, C. J., Egecioglu, E., Elmgren, A., Törnell, J., Oscarsson, J. y Bohlooly-Y, M. (2008). Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 294(2), 251–260. https://doi.org/10.1152/AJPENDO.00401.2007/ASSET/IMAGES/LARGE/ZH10010852180006.JPEG

Bocarsly, M. E., Fasolino, M., Kane, G. A., Lamarca, E. A., Kirschen, G. W., Karatsoreos, I. N., McEwen, B. S. y Gould, E. (2015). Obesity diminishes synaptic markers, alters Microglial morphology, and impairs cognitive function. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15731–15736. https://doi.org/10.1073/PNAS.1511593112/SUPPL_FILE/PNAS.1511593112.SAPP.PDF

Burokas, A., Martín-García, E., Espinosa-Carrasco, J., Erb, I., McDonald, J., Notredame, C., Dierssen, M. y Maldonado, R. (2018). Extinction and reinstatement of an operant responding maintained by food in different models of obesity. Addiction Biology, 23(2), 544–555. https://doi.org/10.1111/ADB.12597

Burokas, A., Martín-García, E., Gutiérrez-Cuesta, J., Rojas, S., Herance, J. R., Gispert, J. D., Serra, M. Á. y Maldonado, R. (2014). Relationships between serotonergic and cannabinoid system in depressive-like behavior: A PET study with [11C]-DASB. Journal of Neurochemistry, 130(1), 126–135. https://doi.org/10.1111/JNC.12716

Castells-Nobau, A., Puig, I., Motger-Albertí, A., de la Vega-Correa, L., Rosell-Díaz, M., Arnoriaga-Rodríguez, M., Escrichs, A., Garre-Olmo, J., Puig, J., Ramos, R., Ramió-Torrentà, L., Pérez-Brocal, V., Moya, A., Pamplona, R., Jové, M., Sol, J., Martin-Garcia, E., Martinez-Garcia, M., Deco, G.,… Mayneris-Perxachs, J. (2024). Microviridae bacteriophages influence behavioural hallmarks of food addiction via tryptophan and tyrosine signalling pathways. Nature Metabolism. https://doi.org/10.1038/S42255-024-01157-X

Cheke, L. G., Simons, J. S. y Clayton, N. S. (2016). Higher body mass index is associated with episodic memory deficits in young adults. Quarterly Journal of Experimental Psychology (2006), 69(11), 2305. https://doi.org/10.1080/17470218.2015.1099163

Chen, L., Guo, L., Feng, S., Wang, C., Cui, Z., Wang, S., Lu, Q., Chang, H., Hang, B., Snijders, A. M., Mao, J. H., Lu, Y. y Ding, D. (2023). Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice. BMJ Open Diabetes Research & Care, 11(3), e003282. https://doi.org/10.1136/BMJDRC-2022-003282

Chen, Y., Zhou, J. y Wang, L. (2021). Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.625913/FULL

DiSabato, D. J., Quan, N. y Godbout, J. P. (2016). Neuroinflammation: The Devil is in the Details. Journal of Neurochemistry, 139(Suppl 2), 136. https://doi.org/10.1111/JNC.13607

Domingo-Rodriguez, L., Ruiz de Azua, I., Dominguez, E., Senabre, E., Serra, I., Kummer, S., Navandar, M., Baddenhausen, S., Hofmann, C., Andero, R., Gerber, S., Navarrete, M., Dierssen, M., Lutz, B., Martín-García, E. y Maldonado, R. (2020). A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nature Communications, 11(1), 1–16. https://doi.org/10.1038/s41467-020-14458-y

Dong, T. S., Mayer, E. A., Osadchiy, V., Chang, C., Katzka, W., Lagishetty, V., Gonzalez, K., Kalani, A., Stains, J., Jacobs, J. P., Longo, V. D. y Gupta, A. (2020). A Distinct Brain-Gut-Microbiome Profile Exists for Females with Obesity and Food Addiction. Obesity (Silver Spring, Md.), 28(8), 1477. https://doi.org/10.1002/OBY.22870

El-Sayed, A., Aleya, L. y Kamel, M. (2021). Microbiota’s role in health and diseases. Environmental Science and Pollution Research International, 28(28), 36967. https://doi.org/10.1007/S11356-021-14593-Z

Espinosa-Carrasco, J., Burokas, A., Fructuoso, M., Erb, I., Martín-García, E., Gutiérrez-Martos, M., Notredame, C., Maldonado, R. y Dierssen, M. (2018). Time-course and dynamics of obesity-related behavioral changes induced by energy-dense foods in mice. Addiction Biology, 23(2), 531–543. https://doi.org/10.1111/ADB.12595

Fumagalli, A., Castells-Nobau, A., Trivedi, D., Garre-Olmo, J., Puig, J., Ramos, R., Ramió-Torrentà, L., Pérez-Brocal, V., Moya, A., Swann, J., Martin-Garcia, E., Maldonado, R., Fernández-Real, J. M. y Mayneris-Perxachs, J. (2025). Archaea methanogens are associated with cognitive performance through the shaping of gut microbiota, butyrate and histidine metabolism. Gut Microbes, 17(1). https://doi.org/10.1080/19490976.2025.2455506

García-Blanco, A., Domingo-Rodriguez, L., Cabana-Domínguez, J., Fernández-Castillo, N., Pineda-Cirera, L., Mayneris-Perxachs, J., Burokas, A., Espinosa-Carrasco, J., Arboleya, S., Latorre, J., Stanton, C., Cormand, B., Fernández-Real, J. M., Martín-García, E. y Maldonado, R. (2022). miRNA signatures associated with vulnerability to food addiction in mice and humans. Journal of Clinical Investigation, 132(10). https://doi.org/10.1172/JCI156281

Gupta, A., Osadchiy, V. y Mayer, E. A. (2020). Brain–gut–microbiome interactions in obesity and food addiction. Nature Reviews Gastroenterology and Hepatology, 17(11), 655–672. https://doi.org/10.1038/s41575-020-0341-5

Higgs, S. (2015). Social norms and their influence on eating behaviours. Appetite, 86, 38–44. https://doi.org/10.1016/J.APPET.2014.10.021

Higgs, S. (2016). Cognitive processing of food rewards. Appetite, 104, 10–17. https://doi.org/10.1016/j.appet.2015.10.003

Higgs, S., Williamson, A. C., Rotshtein, P. y Humphreys, G. W. (2008). Sensory-Specific Satiety Is Intact in Amnesics Who Eat Multiple Meals. Psychological Science, 19(7), 623–628. https://doi.org/10.1111/J.1467-9280.2008.02132.X

Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., Zhu, D., Koya, J. B., Wei, L., Li, J. y Chen, Z. S. (2022). Microbiota in health and diseases. Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–28. https://doi.org/10.1038/s41392-022-00974-4

Hrncir, T. (2022). Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms, 10(3), 578. https://doi.org/10.3390/MICROORGANISMS10030578

Hussain, S. S. y Bloom, S. R. (2013). The regulation of food intake by the gut-brain axis: Implications for obesity. International Journal of Obesity (2005), 37(5), 625–633. https://doi.org/10.1038/IJO.2012.93

Kearns, R. (2024). Gut–Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cellular and Molecular Neurobiology 2024 44:1, 44(1), 1–18. https://doi.org/10.1007/S10571-024-01496-Z

Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F. y Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019

Kloock, S., Ziegler, C. G. y Dischinger, U. (2023). Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacology & Therapeutics, 251, 108549. https://doi.org/10.1016/J.PHARMTHERA.2023.108549

Liang, F., Lu, X., Deng, Z., Zhong, H. J., Zhang, W., Li, Q., Zhou, H. H., Liou, Y. L. y He, X. X. (2022). Effect of Washed Microbiota Transplantation on Patients With Dyslipidemia in South China. Frontiers in Endocrinology, 13. https://doi.org/10.3389/FENDO.2022.827107

López-Taboada, I., González-Pardo, H. y Conejo, N. M. (2020). Western Diet: Implications for Brain Function and Behavior. Frontiers in Psychology, 11, 23. https://doi.org/10.3389/FPSYG.2020.564413

Luo, S., Zhang, H., Jiang, X., Xia, Y., Tang, S., Duan, X., Sun, W., Gao, M., Chen, C., Zou, Z., Zhou, L. y Qiu, J. (2023). Antibiotics administration alleviates the high fat diet-induced obesity through altering the lipid metabolism in young mice. Lipids, 58(1), 19–32. https://doi.org/10.1002/LIPD.12361,

Magnusson, K. R., Hauck, L., Jeffrey, B. M., Elias, V., Humphrey, A., Nath, R., Perrone, A. y Bermudez, L. E. (2015). Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience, 300, 128–140. https://doi.org/10.1016/j.neuroscience.2015.05.016

Mancino, S., Burokas, A., Gutiérrez-Cuesta, J., Gutiérrez-Martos, M., Martín-García, E., Pucci, M., Falconi, A., D’Addario, C., Maccarrone, M. y Maldonado, R. (2015). Epigenetic and Proteomic Expression Changes Promoted by Eating Addictive-Like Behavior. Neuropsychopharmacology 2015 40:12, 40(12), 2788–2800. https://doi.org/10.1038/npp.2015.129

Martín-García, E., Burokas, A., Kostrzewa, E., Gieryk, A., Korostynski, M., Ziolkowska, B., Przewlocka, B., Przewlocki, R. y Maldonado, R. (2011). New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology, 215(1), 49–70. https://doi.org/10.1007/S00213-010-2110-6

Martín-García, E., Burokas, A., Martín, M., Berrendero, F., Rubí, B., Kiesselbach, C., Heyne, A., Gispert, J. D., Millán, O. y Maldonado, R. (2010). Central and peripheral consequences of the chronic blockade of CB1 cannabinoid receptor with rimonabant or taranabant. Journal of Neurochemistry, 112(5), 1338–13351. https://doi.org/10.1111/J.1471-4159.2009.06549.X

Mayneris-Perxachs, J., Arnoriaga-Rodríguez, M., Luque-Córdoba, D., Priego-Capote, F., Pérez-Brocal, V., Moya, A., Burokas, A., Maldonado, R. y Fernández-Real, J. M. (2020). Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: Influences of obesity and menopausal status. Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00913-x

Mayneris-Perxachs, J., Castells-Nobau, A., Arnoriaga-Rodríguez, M., Martin, M., de la Vega-Correa, L., Zapata, C., Burokas, A., Blasco, G., Coll, C., Escrichs, A., Biarnés, C., Moreno-Navarrete, J. M., Puig, J., Garre-Olmo, J., Ramos, R., Pedraza, S., Brugada, R., Vilanova, J. C., Serena, J.,… Fernández-Real, J. M. (2022a). Microbiota alterations in proline metabolism impact depression. 34(5), 681-701.e10. https://pubmed.ncbi.nlm.nih.gov/35508109/

Mayneris-Perxachs, J., Castells-Nobau, A., Arnoriaga-Rodríguez, M., Garre-Olmo, J., Puig, J., Ramos, R., Martínez-Hernández, F., Burokas, A., Coll, C., Moreno-Navarrete, J. M., Zapata-Tona, C., Pedraza, S., Pérez-Brocal, V., Ramió-Torrentà, L., Ricart, W., Moya, A., Martínez-García, M., Maldonado, R. y Fernández-Real, J. M. (2022b). Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host & Microbe, 30(3), 340-356.e8. https://doi.org/10.1016/J.CHOM.2022.01.013

Mayneris-Perxachs, J., Arnoriaga-Rodríguez, M., Garre-Olmo, J., Puig, J., Ramos, R., Trelis, M., Burokas, A., Coll, C., Zapata-Tona, C., Pedraza, S., Pérez-Brocal, V., Ramió, L., Ricart, W., Moya, A., Jové, M., Sol, J., Portero-Otin, M., Pamplona, R., Maldonado, R. y Fernández-Real, J. M. (2022c). Presence of Blastocystis in gut microbiota is associated with cognitive traits and decreased executive function. The ISME Journal, 16(9), 2181–2197. https://doi.org/10.1038/S41396-022-01262-3

Megur, A., Daliri, E. B. M., Baltriukienė, D. y Burokas, A. (2022). Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. International Journal of Molecular Sciences, 23(11). https://doi.org/10.3390/IJMS23116097

Moore, C. F., Sabino, V., Koob, G. F. y Cottone, P. (2017). Pathological Overeating: Emerging Evidence for a Compulsivity Construct. Neuropsychopharmacology, 42(7), 1375–1389. https://doi.org/10.1038/npp.2016.269

Nicolas, S., Dohm-Hansen, S., Lavelle, A., Bastiaanssen, T. F. S., English, J. A., Cryan, J. F. y Nolan, Y. M. (2024). Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Translational Psychiatry, 14(1). https://doi.org/10.1038/S41398-024-02904-0

Oliveras-Cañellas, N., Castells-Nobau, A., de la Vega-Correa, L., Latorre-Luque, J., Motger-Albertí, A., Arnoriaga-Rodriguez, M., Garre-Olmo, J., Zapata-Tona, C., Coll-Martínez, C., Ramió-Torrentà, L., Moreno-Navarrete, J. M., Puig, J., Villarroya, F., Ramos, R., Casadó-Anguera, V., Martín-García, E., Maldonado, R., Mayneris-Perxachs, J. y Fernández-Real, J. M. (2023). Adipose tissue coregulates cognitive function. Science Advances, 9(32). https://doi.org/10.1126/SCIADV.ADG4017

Penzenstadler, L., Soares, C., Karila, L. y Khazaal, Y. (2019). Systematic Review of Food Addiction as Measured with the Yale Food Addiction Scale: Implications for the Food Addiction Construct. Current Neuropharmacology, 17(6), 526. https://doi.org/10.2174/1570159X16666181108093520

Qiu, B., Liang, J. X. y Li, C. (2023). Effects of fecal microbiota transplantation in metabolic syndrome: A meta-analysis of randomized controlled trials. PLOS ONE, 18(7), e0288718. https://doi.org/10.1371/JOURNAL.PONE.0288718

Requena, T., Martínez-Cuesta, M. C. y Peláez, C. (2018). Diet and microbiota linked in health and disease. Food & Function, 9(2), 688–704. https://doi.org/10.1039/C7FO01820G

Samulėnaitė, S., García-Blanco, A., Mayneris-Perxachs, J., Domingo-Rodríguez, L., Cabana-Domínguez, J., Fernàndez-Castillo, N., Gago-García, E., Pineda-Cirera, L., Burokas, A., Espinosa-Carrasco, J., Arboleya, S., Latorre, J., Stanton, C., Hosomi, K., Kunisawa, J., Cormand, B., Fernández-Real, J. M., Maldonado, R. y Martín-García, E. (2024). Gut microbiota signatures of vulnerability to food addiction in mice and humans. Gut, gutjnl-2023-331445. https://doi.org/10.1136/gutjnl-2023-331445

Song, S., Li, Q., Jiang, Y., Liu, Y., Xu, A., Liu, X. y Chen, H. (2022). Do Overweight People Have Worse Cognitive Flexibility? Cues-Triggered Food Craving May Have a Greater Impact. Nutrients, 14(2). https://doi.org/10.3390/NU14020240

Underwood, E. L. y Thompson, L. T. (2016). A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism. Neural Plasticity, 2016. https://doi.org/10.1155/2016/7385314

Vendrik, K. E. W., Ooijevaar, R. E., de Jong, P. R. C., Laman, J. D., van Oosten, B. W., van Hilten, J. J., Ducarmon, Q. R., Keller, J. J., Kuijper, E. J. y Contarino, M. F. (2020). Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 10, 98. https://doi.org/10.3389/FCIMB.2020.00098/FULL

Vijaya, A. K., Kuras, S., Šimoliūnas, E., Mingaila, J., Makovskytė, K., Buišas, R., Daliri, E. B. M., Meškys, R., Baltriukienė, D. y Burokas, A. (2024). Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain, Behavior, and Immunity, 122, 167–184. https://doi.org/10.1016/J.BBI.2024.08.022

Volcko, K. L., Carroll, Q. E., Brakey, D. J. y Daniels, D. (2020). HIGH-FAT DIET ALTERS FLUID INTAKE WITHOUT REDUCING SENSITIVITY TO GLUCAGON-LIKE PEPTIDE-1 RECEPTOR AGONIST EFFECTS. Physiology & Behavior, 221, 112910. https://doi.org/10.1016/J.PHYSBEH.2020.112910

Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R. S., Bartelsman, J. F. W. M., Dallinga-Thie, G. M., Ackermans, M. T., Serlie, M. J., Oozeer, R., Derrien, M., Druesne, A., Van Hylckama Vlieg, J. E. T., Bloks, V. W., Groen, A. K., Heilig, H. G. H. J., Zoetendal, E. G., Stroes, E. S., De Vos, W. M., … Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4). https://doi.org/10.1053/J.GASTRO.2012.06.031

World Health Organisation. Obesity and overweight. (2022). https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Wu, Z., Zhang, B., Chen, F., Xia, R., Zhu, D., Chen, B., Lin, A., Zheng, C., Hou, D., Li, X., Zhang, S., Chen, Y. y Hou, K. (2023). Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study. Frontiers in Cellular and Infection Microbiology, 12, 1089991. https://doi.org/10.3389/FCIMB.2022.1089991/FULL

Yarullina, D., Novoselova, V., Alexandrova, A., Arslanova, A., Yakovleva, O., Shaidullov, I., Nikolaev, Y., El-Registan, G., Kudrin, V. y Sitdikova, G. (2024). Probiotic Lactobacilli Ameliorate Antibiotic-Induced Cognitive and Behavioral Impairments in Mice. Microbiology Research 2024, Vol. 15, Pages 1471-1485, 15(3), 1471–1485. https://doi.org/10.3390/MICROBIOLRES15030099

Yokoyama, Y., Nakamura, T. J., Yoshimoto, K., Ijyuin, H., Tachikawa, N., Oda, H., Shiraishi, R., Shinohara, K., Kumadaki, K., Honda, S., Nakamura, A., Kitamura, N., Tsubota, K. y Watanabe, M. (2020). A high-salt/high fat diet alters circadian locomotor activity and glucocorticoid synthesis in mice. PloS One, 15(5). https://doi.org/10.1371/JOURNAL.PONE.0233386

Publicado

2025-12-23

Número

Sección

Originales